If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-72x^2+72x+8=0
a = -72; b = 72; c = +8;
Δ = b2-4ac
Δ = 722-4·(-72)·8
Δ = 7488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7488}=\sqrt{576*13}=\sqrt{576}*\sqrt{13}=24\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-24\sqrt{13}}{2*-72}=\frac{-72-24\sqrt{13}}{-144} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+24\sqrt{13}}{2*-72}=\frac{-72+24\sqrt{13}}{-144} $
| 7=3x+12 | | 20x^2+80x+50=2000 | | x-2/x^2=4x-12 | | (17x+8)+(17x-3)=175 | | 1+3=10a | | F(x)=|1-3x| | | D(g)=50g | | 9x+(9x+4)=77 | | 5x/7-3=x | | -20+18w=18w-4-16 | | 6(x+3)=5+8 | | x^2+x+-321=0 | | p(9,4)= | | -8w+5(w+5)=19 | | 20x+21=30x-29 | | (8r+3)(6r+5)=0 | | 100=y-0.05y | | 34-8s=5(6s+3) | | 2(x-3)-3(x-4)=2-5(x-2)+1) | | x+6=9-x | | n/5-7=12 | | 15(x+3)=(2x)(12) | | 9(x-3)=180 | | 4n-3=2n+1 | | 6.4=1.2(4+2x | | 7^3^x+4=7 | | 2x/3+3/4=1 | | 6.5=1.2(4+2x) | | 5z-2-9=21 | | p×.05×.5=32.50 | | 32.50=p×.05×.5 | | 7d-2+2d+8=180 |